If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-3x^2-23=-40
We move all terms to the left:
-3x^2-23-(-40)=0
We add all the numbers together, and all the variables
-3x^2+17=0
a = -3; b = 0; c = +17;
Δ = b2-4ac
Δ = 02-4·(-3)·17
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*-3}=\frac{0-2\sqrt{51}}{-6} =-\frac{2\sqrt{51}}{-6} =-\frac{\sqrt{51}}{-3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*-3}=\frac{0+2\sqrt{51}}{-6} =\frac{2\sqrt{51}}{-6} =\frac{\sqrt{51}}{-3} $
| 150=30b | | 16+c=73 | | (6x+1)=(2x-1) | | r/8-4=2 | | 6+x/8=12 | | 974=q-83 | | 3(3x+6)-2(2x+4)=20 | | 23t=851 | | 2x-12=3x-23 | | 80=q+25 | | 0=24+3x | | 19+x/3=24 | | 7+p=50 | | 10−6v=−104v=−19 | | 10−6v=−104v=−19{v}=-{19}v=−19 | | x/3+15=17 | | 18-x/7=10 | | (4x-76)=(2x+12) | | X+6(3x)=30 | | 3a+4a=-49 | | 5=2/(z+3) | | 8=2/k+5 | | X2-16x+58=0 | | 1(x+2)=11 | | 18j+3j-19j-2j+j=7 | | 18j+3j-19j-2j=7 | | 459+p=513 | | g-g+g=2 | | 3y-y+4y+2y=8 | | -3h=-3h+5 | | 5s-18=5 | | 8c-7c=32 |